A requirement for the neuromodulators octopamine and tyramine in Drosophila melanogaster female sperm storage.

نویسندگان

  • Frank W Avila
  • Margaret C Bloch Qazi
  • C Dustin Rubinstein
  • Mariana F Wolfner
چکیده

Female sperm storage is common among organisms with internal fertilization. It is important for extended fertility and, in cases of multiple mating, for sperm competition. The physiological mechanisms by which females store and manage stored sperm are poorly understood. Here, we report that the biogenic amines tyramine (TA) and octopamine (OA) in Drosophila melanogaster females play essential roles in sperm storage. D. melanogaster females store sperm in two types of organs, a single seminal receptacle and a pair of spermathecae. We examined sperm storage parameters in females mutant in enzymes required for the biochemical synthesis of tyrosine to TA and TA to OA, respectively. Postmating uterine conformational changes, which are associated with sperm entry and accumulation into storage, were unaffected by the absence of either TA or OA. However, sperm release from storage requires both TA and OA; sperm were retained in storage in both types of mutant females at significantly higher levels than in control flies. Absence of OA inhibited sperm depletion only from the seminal receptacle, whereas absence of both OA and TA perturbed sperm depletion from both storage organ types. We find innervation of the seminal receptacle and spermathecae by octopaminergic-tyraminergic neurons. These findings identify a distinct role for TA and OA in reproduction, regulating the release of sperm from storage, and suggest a mechanism by which Drosophila females actively regulate the release of stored sperm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mating Regulates Neuromodulator Ensembles at Nerve Termini Innervating the Drosophila Reproductive Tract

Upon mating, regions of the female reproductive tract mature and alter their function [1-3], for example to facilitate storage of sperm or control the release of eggs [4-6]. The female's nervous system and neuromodulators play important roles in her responses to mating [7-13]. However, it is difficult to reconcile the reproductive tract's many changing but coordinated events with the small set ...

متن کامل

Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera.

In the central nervous system (CNS) of both vertebrates and invertebrates, biogenic amines are important neuroactive molecules. Physiologically, they can act as neurotransmitters, neuromodulators, or neurohormones. Biogenic amines control and regulate various vital functions including circadian rhythms, endocrine secretion, cardiovascular control, emotions, as well as learning and memory. In in...

متن کامل

Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly...

متن کامل

Unusual genetic architecture of natural variation affecting drug resistance in Drosophila melanogaster.

Naturally occurring genetic variation was quantified for survival time of adult Drosophila melanogaster exposed to chronic ingestion of the drugs nicotine, caffeine, dopamine, tyramine and octopamine. Responses to nicotine, tyramine and octopamine were genetically correlated in both sexes, whereas caffeine response correlated with starvation resistance. However, there is also genetic variation ...

متن کامل

Fast-scan cyclic voltammetry for the detection of tyramine and octopamine.

Tyramine and octopamine are biogenic amine neurotransmitters in invertebrates that have functions analogous to those of the adrenergic system in vertebrates. Trace amounts of these neurotransmitters have also been identified in mammals. The purpose of this study was to develop an electrochemical method using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to detect fast changes in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 12  شماره 

صفحات  -

تاریخ انتشار 2012